
ar
X

iv
:1

80
2.

03
81

5v
2

 [
cs

.C
C

]
 9

 J
ul

 2
01

8

Recognizing Read-Once Functions from

Depth-Three Formulas

Alexander Kozachinskiy

National Research University Higher School of Economics
akozachinskiy@hse.ru

Abstract. Consider the following decision problem: for a given mono-
tone Boolean function f decide, whether f is read-once. For this problem,
it is essential how the input function f is represented. On a negative side
we have the following results. Elbassioni, Makino and Rauf ([1]) proved
that this problem is coNP-complete when f is given by a depth-4 read-2
monotone Boolean formula. Gurvich ([2]) proved that this problem is
coNP-complete even when the input is the following expression: C ∨Dn,
where Dn = x1y1 ∨ . . . ∨ xnyn and C is a monotone CNF over the vari-
ables x1, y1, . . . , xn, yn (note that this expression is a monotone Boolean
formula of depth 3; in [2] nothing is said about the readability of C,
but the proof is valid even if C is read-2 and thus the entire formula is
read-3).
On a positive side, from [3] we know that there is a polynomial time
algorithm to recognize read-once functions when the input is a monotone
depth-2 formula (that is, a DNF or a CNF). There are even very fast
algorithms for this problem ([4]).
We show that we can test in polynomial-time whether a given expression
C ∨ D computes a read-once function, provided that C is a read-once
monotone CNF and D is a read-once monotone DNF and all the vari-
ables of C occur also in D (recall that due to Gurvich, the problem is
coNP-complete when C is read-2). We also observe that from the so-
called Sausage Lemma of Boros et al. ([7]) it follows that the problem
of recognizing read-once functions is coNP-complete when the input for-
mula is depth-3 read-2. This improves the result of [1] in the depth and
the result of [2] in the readability of the input formula. Moreover, we
prove a new variant of Sausage Lemma, which allows us to derive that
read-once recognition is coNP-complete even for depth-3 read-2 formulas
of the form Ψ ∧Dn, where Dn is as above and Ψ is a

∧
−
∨

−
∧

depth-3
read-once monotone Boolean formula.

Keywords: read-once functions, monotone Boolean functions, coNP-
completeness

1 Introduction

In this paper we study the following decision problem: decide, for a given mono-
tone Boolean function f , whether f is a read-once function (the latter means

http://arxiv.org/abs/1802.03815v2

that the function can be computed by a monotone formula in which every vari-
able occurs only once). Of course, to specify the problem, we need to specify
the representation of f . For some representations this problem turns out to be
tractable. For example, it is known (see [3]) that if f is given by a monotone
DNF (or, equivalently, CNF), then the corresponding problem can be solved in
polynomial time. Golumbic, Mintz and Rotics ([4]) gave quite fast algorithm for
this problem which works in time O(nm), where m is the length of the given
DNF and n is the number of variables. In [4] they also asked how hard is this
problem when f is represented in some other way, for example, when f is given
by an arbitrary Boolean formula.

First of all, let us note that if the input is a monotone Boolean formula,
then the problem belongs to coNP. This follows from the following theorem by
Gurvich:

Theorem 1 ([5]). A monotone Boolean function f is read-once iff every minterm
S of f and every maxterm T of f intersect in exactly one point.

Thus to show that f is not read-once it is enough to demonstrate a minterm
S and a maxterm T with |S ∩ T | > 1 (it is not hard to show that given a
formula S, T , we can decide in polynomial time whether S is a minterm and T
is a maxterm).

Soon after Golumbic, Mintz and Rotics raised their question, Elbassioni,
Makino and Rauf ([1]) proved that the read-once recognition problem is coNP-
complete when the input function f is given by a depth-4 read-2 monotone
Boolean formula. The same authors also proved that it is NP-hard to approx-
imate the readability of the monotone Boolean function f : {0, 1}n → {0, 1},
given by a depth-4 monotone Boolean formula, within a factor of O(n).

Later, Gurvich ([2]) proved, that the problem of recognizing read-once func-
tions is coNP-complete even when the input is the following expression: C ∨Dn,
where Dn = x1y1 ∨ . . . ∨ xnyn and C is a monotone CNF over the variables
x1, y1, . . . , xn, yn. Note that the entire formula C ∨Dn is a depth-3 formula. The
paper [2] says nothing about the readability of C, but the proof is valid even if
C is read-2 1 (so that the whole expression is read-3).

Our main result shows that this problem becomes tractable, if C is read-once
even when Dn is any monotone read-once DNF:

Theorem 2. There is a polynomial-time algorithm which decides, whether a
given expression C ∨ D computes a read-once function, provided that C is a
monotone read-once CNF, D is a monotone read-once DNF, and every variable
of C occurs also in D.

We don’t know whether the last restriction can be removed. However, we
find this theorem interesting due to its connection to the result of Gurvich.

We also observe that from the so-called Sausage Lemma of Boros et al. ([7])
it follows that the problem of recognizing read-once functions is coNP-complete

1 This is due to the fact that the SAT-problem is NP-complete even for read-3 (non-
monotone) CNFs.

when the input formula is depth-3 read-2 (note that [1] requires depth at least 4
and [2] requires readability at least 3 for the input formula). Moreover, we may
consider only formulas which are conjunctions of two read-once formulas.

In more detail, Sausage Lemma states that it is coNP-complete problem to
decide whether Ψ → D is a tautology, where Ψ is a

∧
−
∨
−
∧

depth-3 read-once
monotone Boolean formula and D is a read-once monotone DNF. Further, it is
easy to show (using Theorem 1) that Ψ → D is a tautology if and only if the
following formula:

Ψ ∧ (w1w3 ∨ w2w4) ∧ (D ∨ w1w2 ∨ w3w4)

computes a read-once function. Here w1, w2, w3, w4 are fresh variables.

Using a completely different reduction, we prove that Sausage Lemma is true
even when D is of the same form as in the Gurvich’s hardness result from [2].

Theorem 3. The problem to decide whether Ψ → Dn is a tautology is coNP-
complete. Here Dn = x1y1 ∨ . . .∨ xnyn and Ψ is a

∧
−
∨
−
∧

depth-3 read-once
monotone Boolean formula over x1, y1, . . . , xn, yn.

The same trick with fresh variables allows us to derive the following

Corollary 1. It is a coNP-complete problem to decide whether a given expres-
sion Ψ∧Dn computes a read-once function. Here Dn = x1y1∨. . .∨xnyn and Ψ is
a
∧
−
∨
−
∧

depth-3 read-once monotone Boolean formula over x1, y1, . . . , xn, yn.

Remark. Corollary 1 can be used to show that inapproximability result of
Elbassioni, Makino and Raur is also true for depth-3 formulas. This is, however,
can be done with the use of the result of Gurvich as well.

2 Preliminaries

A monotone Boolean formula (i.e., a ∧,∨-formula) Φ is called a read-k formula
if every variable occurs at most k times in Φ. A monotone Boolean function
f is called a read-k function if there is a monotone read-k formula, computing
f . Readability of a Boolean function f (formula Φ) is the minimal k such that
function f (formula Φ) is read-k.

Assume that f is a monotone Boolean function over the variables x1, . . . , xn

and S is a subset of {x1, . . . , xn}. To simplify notation below let f(S → i) (here
i ∈ {0, 1}) denote the value of f when all the variables from S are set to i and
all the variables from {x1, . . . , xn} \ S are set to 1− i.

A subset S ⊂ {x1, . . . , xn} is called a minterm of f if f(S → 1) = 1 but
for every proper subset S′ of S it holds that f(S′ → 1) = 0. Similarly, a subset
T ⊂ {x1, . . . , xn} is called a maxterm of f if f(T → 0) = 0 but for every proper
subset T ′ of T it holds that f(T ′ → 0) = 1.

Obviously, every minterm of f intersects every f ’s maxterm.

3 Proof of Theorem 2

Our algorithm uses the following lemma:

Lemma 1. There exists a polynomial-time algorithm which for any given read-
once monotone CNF C and for any given read-once monotone DNF D decides,
whether C → D is a tautology.

Proof. It is known (see, e.g., [6]) that there is a polynomial-time algorithm to
decide, whether a given read-2 CNF is satisfiable. Apply this algorithm to ¬(C →
D) = C∧¬D (the latter can be re-written as a read-2 CNF in polynomial time).

⊓⊔

Let {x1, . . . , xn} be variables occurring in D. Let C1, . . . , Cm denote the
clauses of C. Since C is read-once, we may identify C1, . . . , Cm with m disjoint
subsets of {x1, . . . , xn}. The same thing can be done for D. Let

D = D1 ∨D2 ∨ . . . ∨Dl,

where D1, . . . , Dl ⊂ {x1, . . . , xn} are disjoint conjunctions. Note also that D1 ∪
. . . ∪Dl = {x1, . . . , xn}.

We provide first a description of minterms of C ∨ D. Let S be a subset of
{x1, . . . , xn}. We say that S is a right set if for some j ∈ {1, . . . , l} we have S =
Dj . We say that S is a left set if S ⊂ C1 ∪ . . .∪Cm and for every i ∈ {1, . . . ,m}
it holds that |Ci ∩ S| = 1. The following lemma is straightforward.

Lemma 2. A set S is a minterm of C ∨ D if and only if S is a left set that
does not properly include any right set or S is a right set that does not properly
include any left set.

A minterm S of C ∨D is called a left minterm if S is a left set. Similarly, we
call S a right minterm if S is a right set.

Now we are ready to present the algorithm for Theorem 2. In the description
of the algorithm we will state several auxiliary lemmas whose proofs are deferred
to Appendix.

Algorithm. The algorithm works in four steps.

Step 1. Check, using Lemma 1, whether C → D is a tautology. If it is, then
C ∨D is equivalent to D and hence C ∨D computes a read-once function and
the algorithm halts. Otherwise proceed to Step 2.

Step 2. Obviously every maxterm T includes at least one clause of C. For
every pair of distinct clauses Cu, Cv check whether there is a maxterm T of C∨D
such that Cu, Cv ⊂ T . This can be done in polynomial time by the following

Lemma 3. Let Cu, Cv be two distinct clauses of C. Then there exists a maxterm
T of C ∨D such that Cu, Cv ⊂ T if and only if for every j ∈ {1, . . . , l} it holds
that |(Cu ∪ Cv) ∩Dj | ≤ 1.

If there is such T , then C ∨D is not read-once. Indeed, consider any minimal
S0 ⊂ {x1, . . . , xn} such that C(S0 → 1) = 1 and D(S0 → 1) = 0. Such a set
exists, since C → D is not a tautology. As D(S0 → 1) = 0, the set S0 does not
include any right set, and hence is a left minterm ofC∨D. As, C(S0 → 1) = 1, the
set S0 intersects both Cu and Cv. Recall that Cu, Cv ⊂ T and hence |T ∩S0| ≥ 2.
By Theorem 1, C ∨D does not compute a read-once function.

Otherwise (if there is no maxterm T of C ∨D that includes distinct clauses
of C) we proceed to Step 3.

Step 3. For every clause Cu and for every pair of distinct variables p and q
from Cu we check:

– whether there is a right minterm S such that {p, q} ⊂ S (this can be done
in polynomial time since there are only polynomially many right minterms);

– whether there is a maxterm T containing Cu.

The second check can be done in polynomial time using the following

Lemma 4. Assume that C → D is not a tautology and no maxterm of C ∨ D
contains two distinct clauses of C. Then for any clause Ci we can decide in
polynomial-time whether there exists a maxterm T of C ∨D such that Ci ⊂ T .

If for some Cu, p, q both questions answer in positive, then C ∨ D is not a
read-once function. Indeed, in this case both the minterm S and the maxterm T
include distinct variables p and q, and by Theorem 1, C ∨D does not compute
a read-once function. Otherwise we proceed to Step 4.

Step 4. For all u ∈ {1, . . . ,m} and v ∈ {1, . . . , l} with Cu ∩Dv = ∅, and for
all p ∈ Dv and q ∈ Cu we check:

– whether there is a left minterm S such that {p, q} ⊂ S,
– whether there is a maxterm T such that Cu ∪ {p} ⊂ T .

Both checks can be performed in polynomial time by the following lemmas.

Lemma 5. There exists a polynomial-time algorithm which for any given pair
of distinct variables a, b ∈ {x1, . . . , xn} decides, whether there is a left minterm
S of C ∨D such that {a, b} ⊂ S.

Lemma 6. Assume that there is no maxterm of C ∨ D which contains two
distinct clauses of C. Then for any given Cu, Dv with Cu ∩Dv = ∅ and for any
given p ∈ Dv we can decide in polynomial time whether there exists a maxterm
T of C such that Cu ∪ {p} ⊂ T . 2

If for some Cu, Dv, p, q both questions answer in positive, then C ∨ D does
not compute a read-once function. Indeed, in this case both the maxterm T and
the minterm S include distinct variables p, q and by Theorem 1, C ∨D does not
compute a read-once function.

2 The proof of this lemma is almost identical to the proof of Lemma 4. Actually, it
is possible to formulate a single lemma which implies both of them, but then the
formulation of the lemma becomes immense.

Otherwise the algorithm outputs the positive answer and halts. We have to
show that in this case C ∨D indeed computes a read-once function. For the sake
of contradiction, assume that C ∨ D is not read-once. By Theorem 1 there is
a maxterm T of C ∨ D and a minterm S of C ∨D that have distinct common
variables p, q. By Lemma 2 S is either a left or a right minterm. We will consider
these two cases separately.

Case 1: S is a right set, say S = Dj . Then T contains some clause Cu of C.
We claim that S ∩ T ⊂ Cu. Indeed, otherwise S ∩ T would include a variable
y /∈ Cu. Then C(T \ {y} → 0) = 0, as Cu ⊂ T \ {y}. And D(T \ {y} → 0) = 0,
since D is read-once and T ∩Dj has at least 2 variables. We obtain contradiction,
as T is a maxterm of C ∨D.

Thus T ∩S ⊂ Cu. Hence there are two distinct variables p and q from Cu such
that {p, q} ⊂ S. Hence the algorithmmust have halted on Step 3, a contradiction.

Case 2: S is a left set. Again there is a clause Cu ⊂ T . Since S is a left set, S
and Cu have exactly one common variable q. By our assumption T ∩ S includes
another variable p 6= q. Note that p /∈ Cu because otherwise S ∩ Cu has more
than one variable.

Let Dv be the (unique) right set that includes p (here we use the assumption
that every variable is in some right set). We claim that Dv and Cu are disjoint.
For the sake of contradiction assume that there is a variable y ∈ Cu ∩Dv. Then
(C ∨ D)(T \ {p} → 0) = 0. Indeed, C(T \ {p} → 0) = 0, as p /∈ Cu and hence
Cu ⊂ T \ {p}. And D(T \ {p} → 0) = 0, as y 6= p (since y is in Cu and p is not)
and hence T \ {p} still intersects Dv.

Thus T is not a maxterm, and the contradiction shows that Dv and Cu

are disjoint. Therefore, we have found Cu, p, q,Dv such that q ∈ Cu, p ∈ Dv,
Cu and Dv are disjoint and there is a left minterm S and a maxterm T with
{p, q} ⊂ S,Cu ∩ {p} ⊂ T . Hence the algorithm just have halted on Step 4, a
contradiction. (End of Algorithm.)

4 Lower bound

We start this section with the proof of our variant of the Sausage Lemma (The-
orem 3).

Proof (of Theorem 3). We reduce from a clique problem. Assume that we are
given a simple undirected graph G = (V,E) and an integer k and we want to
know whether there is a clique of size k in G. The reduction is divided into two
steps. On step 1 we introduce an auxiliary game between 3 players, Alice, Bob
and Merlin. In this game Alice and Bob cooperatively play against Merlin. The
rules of the game depend on G, k. The structure of this game resembles so-called
GKS communication games (see [8]). We will show that there is a clique of size
k in G if and only if Alice and Bob have a winning strategy in a game. On step
2 of the reduction we will construct (in polynomial time) a

∧
−
∨
−
∧

depth-3
read-once monotone Boolean formula Ψ with the following feature: Alice and
Bob have a winning strategy in a game if and only if Ψ → Dn is not a tautology.
The value of n will depend on k and on the size of G.

The game. There is a room with a tape consisting of k blank cells. The game
has two phases. During the first phase Alice and Merlin are in the room and Bob
is outside. He does not see what happens in a room. Alice and Merlin interact
according to the following protocol. At the beginning Merlin points out to one of
k cells. Then Alice writes some vertex u of G in this cell. Finally, Merlin writes
some vertex v of G in some other cell. The only restriction is that v should not
be connected with u by an edge of G (for example, v can be equal to u, we
assume that there are no self-loops in G). The first phase is finished.

Then, during the second phases, Bob comes in and Alice with Merlin are
outside. Bob sees that exactly two cells of a tape are not blank — each of these
two cells contains a vertex of a graph. To win, Bob should determine which cell
was touched first. More precisely, the cell which was touched first is the one to
which Merlin pointed out in the beginning and in which Alice wrote her vertex.

More formally, let CONF denote the following set:

CONF = {{(i, u), (j, v)} : i, j ∈ {1, . . . , k}, u, v ∈ V, i 6= j, {u, v} /∈ E},

Note that CONF encodes all possible configurations Bob can see when he
comes in.

A strategy of Alice in this game is a function SA : {1, 2, . . . , k} → V , a
strategy of Bob is a function SB : CONF → {1, 2, . . . , k} and a strategy of
Merlin is a triple (i, S1

M , S2
M), where i ∈ {1, 2, . . . , k} and

S1
M : V → {1, 2, . . . , k}, S2

M : V → V.

This triple should satisfy the following condition: for every u ∈ V it holds that
S1
M (u) 6= i and {u, S2

M(u)} /∈ E. We call a pair (SA, SB) a winning strategy, if
for every Merlin’s strategy (i, S1

M , S2
M) it holds that

SB({ (i, SA(i)), (S1
M (SA(i)), S

2
M (SA(i))) }) = i.

Let us show that if there is clique of size k in G, then Alice and Bob have a
winning strategy in the above game. Indeed, assume that w1, . . . , wk ∈ V form
a k-clique in G. Alice’s strategy is the following: if Merlin points out to the ith

cell, then she writes wi in it. Assume that after that Merlin picks jth cell and
writes something in it. How can Bob distinguish the ith cell from the jth cell?
The point is that for v which is written by Merlin in the jth cell we have that
v 6= wj , because wi and wj are connected by an edge. This allows Bob to win.

On the other hand, assume that Alice and Bob have a winning strategy in a
game. Let vi be the vertex which Alice writes according to this strategy when
Merlin points out to the ith cell. Let us show that v1, . . . , vk form a clique in
G. For contradiction assume that there is i 6= j such that vi and vj are not
connected by edge. Note that there are two strategies of Merlin resulting into
the same (from the Bob’s point of view) configuration, namely:

– Merlin points to the ith cell and then writes vj in the jth cell;
– Merlin points to the jth cell and then writes vi in the ith cell.

Both these strategies are legal since {vi, vj} /∈ E. This contradicts the fact that
from this configuration Bob can determine the cell which was touched first.

Now let us proceed to the second step of a reduction. There are exactly
2 · |CONF| outcomes of Alice-Merlin interaction (for each c ∈ CONF there are
two outcomes resulting in c). Introduce a Boolean variable for each possible
outcome. Namely, let xi,u

j,v correspond to an outcome in which Merlin picked the

ith cell, Alice wrote u in the ith cell and then Merlin wrote v in the jth cell.
Every assignment to these variables, on which the value of Dn equals 0,

determines Bob’s strategy. Here Dn =
∨

{(i,u),(j,v)}∈CONF xi,u
j,v ∧ xj,v

i,u. Namely,

for c = {(i, u), (j, v)} define:

SB(c) =

{
i if xi,u

j,v = 1,

j if xj,v
i,u = 1.

For technical reasons, if both xi,u
j,v and xj,v

i,u are set to 0, define SB(c) somehow

in such a way that SB(c) 6= i, j. Note that it never happens that both xi,u
j,v and

xj,v
i,u are set to 1 (otherwise SB(c) would be undetermined for c = {(i, u), (j, v)}).

It is also clear that every Bob’s strategy can be encoded in this way by some
assignment of variables on which Dn = 0.

Once a Bob’s strategy (or equivalently, an assignment to xi,u
j,v) is fixed, the

game is just between Alice and Merlin. Alice wins if and only if an outcome of
her interaction with Merlin corresponds to a variable which is set to 1. Indeed, if
an outcome corresponds to xi,u

j,v , then Bob should output i and it happens if and

only if xi,u
j,v is set to 1 (here in (=⇒)-direction we use the fact that if both xi,u

j,v

and xj,v
i,u are set to 0, then SB(c) 6= i, j). This means that Alice has a winning

strategy if and only if Ψ = 1, where

Ψ =

k∧

i=1

∨

u∈V

∧

(j,v):
{(i,u),(j,v)}∈CONF

xi,u
j,v

(
∧
-gates correspond to Merlin’s moves and

∨
-gate corresponds to Alice’s move).

In other words, Alice and Bob have a winning strategy if and only if there is an
assignment to xi,u

j,v such that Dn is false and Ψ is true or, equivalently, Ψ → Dn

is not a tautology. ⊓⊔

To derive Corollary 1 we need the following simple Lemma.

Lemma 7. A function

f(w1, w2, w3, w4) = w2w3w4 ∨ w1w3w4 ∨ w1w2w4 ∨ w1w2w3

is not read-once.

Proof. Note that {w1, w2, w3} is a minterm of f and {w1, w2} is a maxterm of
f . Hence by Theorem 1 f is not read-once. ⊓⊔

Proof (of Corollary 1). Assume that Ψ is a
∧
−
∨
−
∧

depth-3 read-once mono-
tone Boolean formula over x1, y1, . . . , xn, yn and Dn =

∨n

i=1 xiyi. It is enough
to show that Ψ → Dn is a tautology if and only if

(Ψ ∧ (w1w3 ∨ w2w4)) ∧ (Dn ∨ w1w2 ∨w3w4)

computes a read-once function. Indeed, if Ψ → Dn is a tautology, then

(Ψ ∧ (w1w3 ∨ w2w4)) → (Dn ∨w1w2 ∨ w3w4)

is also a tautology. Hence

(Ψ ∧ (w1w3 ∨w2w4)) ∧ (Dn ∨ w1w2 ∨ w3w4) = Ψ ∧ (w1w3 ∨ w2w4),

and the latter is a read-once formula. On the other hand assume for contra-
diction that Ψ → Dn is not a tautology, but there is a read-once formula
Φ(x1, y1, . . . , xn, yn, w1, . . . , w4), which is logically equivalent to

(Ψ ∧ (w1w3 ∨ w2w4)) ∧ (Dn ∨w1w2 ∨ w3w4).

Let a1, b1, . . . , an, bn be an assignment to x1, y1, . . . , xn, yn such that

Ψ(a1, b1 . . . , an, bn) = 1, Dn(a1, b1 . . . , an, bn) = 0.

Substitute x1 → a1, y1 → b1, . . . xn → an, yn → bn in Φ. The resulting read-once
formula will be

Φ(a1, b1, . . . , an, bn, w1, . . . , w4) = (w1w3 ∨ w2w4) ∧ (w1w2 ∨w3w4)

= w2w3w4 ∨ w1w3w4 ∨w1w2w4 ∨ w1w2w3.

Thus we obtain a read-once formula for w2w3w4 ∨w1w3w4 ∨w1w2w4 ∨w1w2w3,
this a contradiction with Lemma 7. ⊓⊔

Acknowledgments The author would like to thank Alexander Shen and Niko-
lay Vereshchagin for help in writing this paper. The author would like to thank
Vladimir Gurvich for pointing out to [7].

References

1. Elbassioni, K., Makino, K., and Rauf, I. On the readability of monotone
boolean formulae. Journal of combinatorial optimization 22, 3 (2011), 293–304.

2. Gurvich, V. It is a conp-complete problem to decide whether a positive ∨-∧ formula
of depth 3 defines a read-once or respectively quadratic boolean function. Rutcor

Research Report (2010).
3. Golumbic, M. C., and Gurvich, V. Read-once functions. Boolean Functions:

Theory, Algorithms and Applications (2009).
4. Golumbic, M. C., Mintz, A., and Rotics, U. An improvement on the complexity

of factoring read-once boolean functions. Discrete Applied Mathematics 156, 10
(2008), 1633–1636.

5. Gurvich, V. A. Repetition-free boolean functions. Uspekhi Matematicheskikh Nauk

32, 1 (1977), 183–184.
6. Büning, H. and Lettmann, T. Propositional logic: deduction and algorithms

Cambridge University Press, 48 (1999)
7. Boros, E., Elbassioni, K., Gurvich, V., and Makino, K. Generating Vertices

of Polyhedra and Related Problems of Monotone Generation. CRM Proceedings and

Lecture Notes, 48 (2009)
8. Gilmer, J., Kouckỳ, M., and Saks, M. A new approach to the sensitivity conjec-

ture. Proceedings of the 2015 Conference on Innovations in Theoretical Computer

Science, (2015), 247–254.

Appendix

A Proof of Lemma 3

Let T be a maxterm of C ∨ D and Cu, Cv ⊂ T . For the sake of contradiction
assume that there is j ∈ {1, . . . , l} such that |(Cu ∪Cv)∩Dj | ≥ 2. Pick any two
distinct p, q ∈ (Cu ∪ Cv) ∩Dj . Let us show that (C ∨D)(T \ {q} → 0) = 0. To
show that C(T \ {q} → 0) = 0 observe that Cu or Cv does not contain q and
hence Cu ⊂ T \ {q} or Cv ⊂ T \ {q}. To show that D(T \ {q} → 0) = 0 observe
that D(T → 0) = 0 and hence T intersects all sets D1, . . . , Dl. Since q ∈ Dj and
hence q /∈ Di for all i 6= j, the set T \ {q} still intersects Di for all i 6= j. And it
intersects Dj since p ∈ Cu ∪ Cv ⊂ T and p was not removed from T . Since T is
a maxterm, this is a contradiction.

On the other hand, assume that for every j ∈ {1, . . . , l} it holds that |(Cu ∪
Cv) ∩ Dj| ≤ 1. We have to find a maxterm T that includes both Cu and Cv.
Start with T = Cu ∪Cv. Then for all j such that Dj does not intersect Cu ∪Cv

pick a variable from Dj and include it in T . In this way we make T intersect
every Dj in exactly one point. In particular, D(T → 0) = 0 and C(T → 0) = 0.
On the other hand, every proper subset T ′ of T is disjoint with at least one Dj

and hence D(T ′ → 0) = 1. This shows that T is a maxterm.

B Proof of Lemma 4

Since C → D is not a tautology, Ci is non-empty and intersects with some Dj .
Further, without loss of generality we may assume that:

– i = 1;
– C1 intersects with D1, . . .Dr and C1 is disjoint with Dr+1, . . . Dl for some

1 ≤ r ≤ l;
– C2, . . . , Cs all intersect with D1 ∪ D2 ∪ . . . ∪ Dr and Cs+1, . . . , Cm are all

disjoint with D1 ∪D2 ∪ . . . ∪Dr for some 1 ≤ s ≤ m.

From the fact that D1 ∪D2 ∪ . . . ∪Dl = {x1, . . . , xn} we may derive that:

Cs+1, . . . , Cm ⊂ Dr+1 ∪ . . . ∪Dl. (1)

Define an auxiliary CNF Ĉ = Cs+1 ∧ . . . ∧ Cm and an auxiliary DNF D̂ =

Dr+1∨ . . .∨Dl. Note that Ĉ and D̂ are over variables from Dr+1∪ . . .∪Dl (this
follows from (1)).

We claim that there exists T such that T is a maxterm of C ∨D and C1 ⊂ T
if and only if Ĉ → D̂ is not a tautology (the latter by Lemma 1 can be verified
in polynomial time).

(⇐). Assume that Ĉ → D̂ is not a tautology. Then there exists T̂ ⊂ Dr+1 ∪
. . . ∪Dl such that

Cs+1 6⊂ T̂ , . . . , Cm 6⊂ T̂ ; (2)

|Dr+1 ∩ T̂ | = 1, . . . , |Dl ∩ T̂ | = 1; (3)

(take minimal T̂ ⊂ Dr+1∪ . . .∪Dl such that Ĉ(T̂ → 0) = 1 and D̂(T̂ → 0) = 0).

Let us show that T = T̂ ∪ C1 is the maxterm of C ∨ D. First of all, let us
verify that (C ∨D)(T → 0) = 0. Indeed,

– C(T → 0) = 0 because C1 ⊂ T ;
– D(T → 0) = 0 because everyD1, . . . , Dl intersects with T ; namely,D1, . . .Dr

intersect C1 and Dr+1, . . . , Dl intersect T̂ .

Now, assume that T ′ ⊂ T and (C ∨D)(T ′ → 0) = 0. Let us show that this
is possible only when T ′ = T .

Since D(T ′ → 0) = 0, we have that T ′ intersects with every D1, . . . , Dl.
From the fact that C1 is disjoint with Dr+1, . . . , Dl and from (3) it follows that

T̂ ⊂ T ′.
It remains to show that C1 ⊂ T ′. This follows from the assumption that

C(T ′ → 0) = 0. Indeed, then at least one clause of C should be the subset of T ′.

Assume that this clause is Cu. If Cu 6= C1, then Cu ⊂ T̂ . There are two cases:

– The first case. Assume that Cu ∈ {C2, . . . , Cs}. Then Cu ⊂ T̂ ⊂ Dr+1∪ . . .∪
Dl intersects with D1 ∪D2 ∪ . . . ∪Dr, but the latter is impossible.

– The second case. Assume that Cu ∈ {Cs+1, . . . , Cm}. This case contradicts
(2).

(⇒) Assume that T is the maxterm of C ∨ D such that C1 ⊂ T . Define

T̂ = T \ C1. Later we will show that Ĉ(T̂ → 0) = 1, D̂(T̂ → 0) = 0 and hence

Ĉ → D̂ is not a tautology. But at first we should verify that T̂ ⊂ Dr+1∪ . . .∪Dl

(recall that Ĉ, D̂ are over variables from Dr+1 ∪ . . . ∪Dl).

To show that T̂ ⊂ Dr+1 ∪ . . .∪Dl assume for contradiction that T̂ intersects
D1∪D2 ∪ . . .∪Dr and let q be the variable which lies in their intersection. Note
that q /∈ C1 (this is because q ∈ T̂ = T \C1). Let us demonstrate that for such q
we have that (C ∨D)(T \{q} → 0) = 0 (this is already a contradiction since T is
a maxterm). Indeed, C(T \ {q} → 0) = 0 since C1 ⊂ T \ {q}. Further, we should
show that T \ {q} intersects every D1, . . . Dl and hence D(T \ {q} → 0) = 0.
Indeed:

– T \ {q} intersects D1, . . . , Dr because of C1;

– T \ {q} intersects Dr+1, . . . , Dl because of the following two reasons: (a)
D(T → 0) = 0 and hence T intersects every Dr+1, . . . , Dl; (b) q is not in
Dr+1 ∪ . . . ∪Dl.

Thus it remains to show that Ĉ(T̂ → 0) = 1 and D̂(T̂ → 0) = 0. To
show that the first equality is true assume for contradiction that there is Cu ∈
{Cs+1, . . . , Cm} such that Cu ⊂ T̂ = T \C1. But then Cu ⊂ T . This contradicts
the assumption that there is no maxterm of C ∨D which contains two distinct
clauses of C.

To show that the second equality (D̂(T̂ → 0) = 0) is true, observe that T̂

intersects every Dr+1, . . . , Dl. This is true because D(T̂ → 0) = 0 and hence T
intersects Dr+1, . . . , Dl; but C1 by assumption is disjoint with Dr+1, . . . , Dl and
hence T \ C1 still intersects them.

C Proof of Lemma 5

If there is Ci such that a, b ∈ Ci or {a, b} 6⊂ C1 ∪ . . .∪Cm, then no left minterm
S can contain both a and b. From now we assume that this is not the case, i.e.
there is no Ci which contains both a and b and a, b ∈ C1∪ . . .∪Cm. Let Ĉ∨D̂ be
obtained from C∨D by setting a, b to 1. In other words, Ĉ is obtained from C by
erasing all clauses containing a or b and D̂ is obtained from D by erasing a and b.
Assume without loss of generality that C1, C2 are erased clauses, a ∈ C1, b ∈ C2

and D1, . . . , Dr are conjunctions containing a or b (note that r is either 1 or 2).

Then Ĉ and D̂ can be written as

Ĉ = C3 ∧ . . . ∧ Cm,

D̂ = (D1 \ {a, b}) ∨ . . . ∨ (Dr \ {a, b}) ∨Dr+1 ∨ . . . ∨Dl.

We assert that there is a left minterm S containing a and b iff Ĉ → D̂ is not
a tautology. The latter by Lemma 1 can be verified in polynomial times.

(⇐) Assume that Ĉ → D̂ is not a tautology. Take minimal Ŝ ⊂ {x1, . . . , xn}\

{a, b} such that Ĉ(Ŝ → 1) = 1, D̂(Ŝ → 1) = 0. Obviously, such Ŝ satisfies the
following two conditions:

Ŝ ⊂ C3 ∪ . . . ∪ Cm, |Ŝ ∩ C3| = 1, . . . , |Ŝ ∩ Cm| = 1, (4)

D1 \ {a, b} 6⊂ Ŝ, . . . , Dr \ {a, b} 6⊂ Ŝ, Dr+1 6⊂ Ŝ, . . . , Dl 6⊂ Ŝ. (5)

Now, define S = Ŝ ∪ {a, b}. Let us show that S is a left minterm of C ∨D.
From (5) it follows that there is no j ∈ {1, . . . , l} such that Dj ⊂ S. Hence S
contains no right set as a proper subset. Thus it remains to show by Lemma 2
that S is a left set. Since a, b are from C1 ∪ . . . ∪ Cm, we have that

S ⊂ ({a, b} ∪ C3 ∪ . . . ∪ Cm) ⊂ C1 ∪ . . . ∪ Cm.

Moreover, S intersects every clause of C in exactly one point. For C3, . . . , Cm

this follows from (4) and from the fact that C3, . . . , Cm contain neither a nor b.

For C1, C2 this is true because: (a) Ŝ is disjoint with C1, C2; (b) a ∈ C1, b ∈ C2.
(⇒) Assume that there is a left minterm S of C ∨ D containing a and b.

Define Ŝ = S \ {a, b}. Let us show that Ŝ intersects every C3, . . . Cm. Indeed,

this is true for S and a, b are not from C3 ∪ . . . ∪Cm. Hence Ĉ(Ŝ → 1) = 1. On

the other hand, D̂(Ŝ → 1) = 0, since:

– D1 \{a, b} 6⊂ Ŝ, . . .Dr \{a, b} 6⊂ Ŝ because otherwise at least one D1, . . . , Dr

is the subset of S = Ŝ ∪ {a, b};

– Dr+1 6⊂ Ŝ, . . . , Dl 6⊂ Ŝ because it is true even for S.

Thus Ĉ → D̂ is not a tautology.

D Proof of Lemma 6

Without loss of generality we may assume that:

– i = j = 1;
– C1 intersects with D2, . . .Dr and C1 is disjoint with Dr+1, . . . Dl for some

1 ≤ r ≤ l;
– C2, . . . , Cs all intersect with D1 \ {p} ∪D2 ∪ . . . ∪Dr and Cs+1, . . . , Cm are

all disjoint with D1 \ {p} ∪D2 ∪ . . . ∪Dr for some 1 ≤ s ≤ m.

From the fact that D1 ∪D2 ∪ . . . ∪Dl = {x1, . . . , xn} we may derive that:

Cs+1, . . . , Cm ⊂ {p} ∪Dr+1 ∪ . . . ∪Dl. (6)

Now, define:

Ĉs+1 = Cs+1 \ {p}, . . . , Ĉm = Cm \ {p}.

Further, define an auxiliary CNF Ĉ = Ĉs+1∧ . . .∧ Ĉm and an auxiliary DNF

D̂ = Dr+1∨ . . .∨Dl. Note that Ĉ and D̂ are over variables from Dr+1∪ . . .∪Dl

(this follows from (6)).
We claim that there exists T such that T is a maxterm of C∨D and C1∪{p} ⊂

T if and only if Ĉ → D̂ is not a tautology (the latter by Lemma 1 can be verified
in polynomial time).

(⇐). Assume that Ĉ → D̂ is not a tautology. Then there exists T̂ ⊂ Dr+1 ∪
. . . ∪Dl such that

Ĉs+1 6⊂ T̂ , . . . , Ĉm 6⊂ T̂ ; (7)

|Dr+1 ∩ T̂ | = 1, . . . , |Dl ∩ T̂ | = 1; (8)

(take minimal T̂ ⊂ Dr+1∪ . . .∪Dl such that Ĉ(T̂ → 0) = 1 and D̂(T̂ → 0) = 0).

Let us show that T = T̂ ∪ C1 ∪ {p} is a maxterm of C ∨ D. First of all, let
us verify that (C ∨D)(T → 0) = 0. Indeed,

– C(T → 0) = 0 because C1 ⊂ T ;
– D(T → 0) = 0 because every D1, . . . , Dl intersects with T ; namely, D1

contains p, D2, . . . Dr intersect C1 and Dr+1, . . . , Dl intersect T̂ .

Now, assume that T ′ ⊂ T and (C ∨D)(T ′ → 0) = 0. Let us show that this
is possible only when T ′ = T .

Since D(T ′ → 0) = 0, we have that T ′ intersects with every D1, . . . , Dl. From
the fact that C1 ∪ {p} is disjoint with Dr+1, . . . , Dl and from (8) it follows that

T̂ ⊂ T ′. Since C1 and T̂ are disjoint with D1 and T ′ intersects D1, we have that
p ∈ T ′.

It remains to show that C1 ⊂ T ′. This follows from the assumption that
C(T ′ → 0) = 0. Indeed, then at least one clause of C should be the subset of T ′.

Assume that this clause is Cu. If Cu 6= C1, then Cu ⊂ T̂ ∪ {p}. There are two
cases:

– The first case. Assume that Cu ∈ {C2, . . . , Cs}. Then Cu ⊂ T̂ ∪ {p} ⊂
{p}∪Dr+1 ∪ . . .∪Dl intersects with D1 \ {p}∪D2 ∪ . . .∪Dr, but the latter
is impossible.

– The second case. Assume that Cu ∈ {Cs+1, . . . , Cm}. Then Ĉu = Cu \ {p} ⊂

T̂ , and the latter contradicts (7).

(⇒) Assume that T is the maxterm of C ∨D such that C1∪{p} ⊂ T . Define

T̂ = T \ (C1 ∪ {p}). Later we will show that Ĉ(T̂ → 0) = 1, D̂(T̂ → 0) = 0

and hence Ĉ → D̂ is not a tautology. But at first we should verify that T̂ ⊂
Dr+1 ∪ . . . ∪Dl (recall that Ĉ, D̂ are over variables from Dr+1 ∪ . . . ∪Dl).

To show that T̂ ⊂ Dr+1 ∪ . . .∪Dl assume for contradiction that T̂ intersects
D1 ∪ D2 ∪ . . . ∪ Dr and let q be the variable which lies in their intersection.
Note that q 6= p and q /∈ C1 (this is because q ∈ T̂ = T \ (C1 ∪ {p})). Let us
demonstrate that for such q we have that (C ∨D)(T \ {q} → 0) = 0 (this gives
us a contradiction since T is a maxterm). Indeed, C(T \ {q} → 0) = 0 since
C1 ⊂ T \ {q}. Further, we should show that T \ {q} intersects every D1, . . . Dl

and hence D(T \ {q} → 0) = 0. Indeed:

– T \ {q} intersects D1 because of p;
– T \ {q} intersects D2, . . . , Dr because of C1;
– T \ {q} intersects Dr+1, . . . , Dl because of the following two reasons: (a)

D(T → 0) = 0 and hence T intersects every Dr+1, . . . , Dl; (b) q is not in
Dr+1, . . . , Dl.

Thus it remains to show that Ĉ(T̂ → 0) = 1 and D̂(T̂ → 0) = 0. To

show that the first equality is true assume for contradiction that there is Ĉu ∈
{Ĉs+1, . . . , Ĉm} such that Ĉu ⊂ T̂ = T \ (C1 ∪ {p}). But Ĉu = Cu \ {p} and
hence Cu ⊂ T . This contradicts the assumption that there is no maxterm of
C ∨D which contains two distinct clauses of C.

To show that the second equality (D̂(T̂ → 0) = 0) is true, observe that T̂
intersects every Dr+1, . . . , Dl. This follows from the following two observations:
(a) D(T → 0) = 0 and hence T intersects every Dr+1, . . .Dl, (b) {p} ∪ C1 is
disjoint with Dr+1, . . . , Dl.

	Recognizing Read-Once Functions from Depth-Three Formulas

